

РАЗДЕЛ IV ОБОРУДОВАНИЕ И ОСНАСТКА ОБРАБОТКИ ДАВЛЕНИЕМ

УДК 621.81: 621.753.2

Роганов Л. Л. Абрамова Л. Н. Роганов М. Л.

СОСТАВНЫЕ СОЕДИНЕНИЯ С ИЗМЕНЯЮЩИМСЯ НАТЯГОМ

Для передачи осевых сил или крутящего момента от вала к ступице деталей установленных на валу применяют различные соединения: фрикционные (трением) и зацеплением. Наиболее простыми соединениями валов и ступиц считаются фрикционные соединения с натягом, в которых передача нагрузки от одной детали к другой происходит за счет сил трения (сцепления) на поверхности контакта деталей. Поскольку соединение осуществляется действием сил упругости, поэтому связь деталей имеет нежесткую фиксацию деталей в осевом и окружном направлениях. Соединение деталей производится механическим или тепловым способом. При сборке соединений механическим способом охватываемую деталь (обычно, вал) с помощью пресса или ударами бойка (молотка) устанавливают в охватывающую деталь. Этот способ используется при сравнительно небольших сопряжениях и натягах. При больших сопряжениях и натягах чаще применяют тепловой способ сборки соединений путем нагрева охватывающей детали до температуры примерно до 300 °C в масляной ванне, или охлаждением (обычно до температуры – 150 °C) в жидком азоте или подобной среде, охватываемой детали. Выбор способа теплового соединения зависит от соотношения масс и конфигурации деталей, наличия оборудования и устройств, для проведения процесса.

Применение посадок при помощи охлаждения охватываемой детали позволяет получить высокую прочность соединений и отсутствие повреждений сопрягаемых поверхностей. К недостаткам такого способа можно отнести невозможность осуществления соединений с большими натягами и значительный расход охлаждающих материалов [1].

В последнее время получили распространение соединения с натягом с применением промежуточной втулки [2], у которых одна из поверхностей сопряжения является цилиндрической, а другая поверхность коническая. Такие соединения отличаются более простой сборкой, разборкой. Толщина промежуточных втулок выбирается в пределах

2,5 ...10 мм и зависит от диаметра вала (25...250 мм и более). Цилиндрические поверхности втулки и основных деталей обрабатывают так, чтобы между ними был минимальный зазор. При этом зазор и толщина втулки влияют на несущую способность соединения и сила упругого сопротивления втулки, сжатию ступицей снижает контактные давления. Величину зазора рекомендуют устанавливать по посадке H7/h6, а величину уменьшения расчетного давления при изготовлении втулки и рабочих деталей соединения из одинаковых материалов, определяют по формуле:

$$p_{\Delta} = \Delta \cdot E \cdot \left[1 - \left(\frac{d}{d_{16}}\right)^2\right] / 2d,$$

где Δ – зазор;

E — модуль упругости;

d – цилиндрический диаметр соединения;

 d_{16} – внутренний диаметр втулки.

Параметры конических поверхностей, а именно величину конусности, угол конуса, угол уклона, тангенс угла уклона рекомендуется выбирать по табл. 1.

При выборе конусности в соединениях с натягом учитывают возможности механической обработки, условия их самоторможения, т. е. $f_{oc} > tg\alpha$. При $f_{oc} = 0,1$ конусность не может быть более 1:5. Учитывают также способы монтажа, демонтажа соединений, конструктивные особенности узла и т. п.

Таблица 1 Параметры конических поверхностей в соединениях с натягом

Конусность	Угол конуса	Угол уклона, α	Тангенс угла уклона, $tg \alpha$
1:200	0°17′13"	0°8′37"	0,025
1:100	$0^{0}34'23"$	$0^{0}17'12''$	0,049
1:50	1 ⁰ 8′45"	$0^{0}34^{'}23^{''}$	0,099
1:30	1 ⁰ 54'35"	$0^{0}57'18"$	0,0169
1:20	2 ⁰ 51′51"	1 ⁰ 25′56″	0,025
1:15	3 ⁰ 49'6"	1 ⁰ 54 ['] 33 ["]	0,033
1:12	4 ⁰ 46′19"	$2^{0}23^{'}9^{''}$	0,042
1:10	5 ⁰ 43′29"	$2^{0}51'45''$	0,051
1:8	7 ⁰ 9′10"	3 ⁰ 34 ['] 35 ["]	0,062
1:7	8 ⁰ 10′16"	$4^{0}5'8"$	0,086
1:5	11 ⁰ 25′16"	5 ⁰ 42 ['] 38"	0,01
1:3	18 ⁰ 55′30"	9 ⁰ 27 ['] 45 ["]	0,166

Проектирование и расчет соединений с натягом проводят по методикам, описанным в большом количестве научной и технической литературе [3, 4, 5, 6].

Целью данной статьи является рассмотрение новых видов соединений с натягом, которые могут характеризоваться более простыми методами изготовления и сборки, чем применяемые до настоящего времени.

Все виды соединений с натягом разделены на соединения, размещенные на валах и предназначенные для передачи крутящего момента и соединения, размещенные между валом и втулкой, основное назначение которых передача осевой силы. На приведенных конструктивных схемах (рис. 1, а, б, в, г, д) показаны соединения с натягом разного типа, предназначенные, в основном для передачи крутящего момента.

На рис. 1, а, б, в представлены конструктивные схемы соединений с натягом, особенностью которых являются применение удлиненных втулок $\ell/d \ge 0,8\dots 1,2$, в которых ℓ — общая длина сопряжения втулки с валом, d — диаметр вала.

На рис. 1, г, д представлены схемы соединений с натягом, у которых длина сопряжений втулки с диаметром ℓ/d меньше 0,25 ...0,5.

На рис. 1, е показана схема соединения, которая снабжается специальными распорными болтами 8. Все разновидности соединений включают вал 1, втулку основную 2, втулку промежуточную 3, болты с гайками стяжные 4, шайбы промежуточные 5 и упорные 6, гайки прижимные 7, болты распорные 8. На схемах, рис. 1, а, б, д втулка 2 соединена с деталями, передающими крутящий момент в соединении, на схемах рис. 1 а, б, \mathfrak{g} во втулке 2 выполнены подводы давления жидкости управляющие $p_{ynp.1}$ и $p_{ynp.2}$, которые могут воздействовать на конические поверхности втулок 2 и обеспечивать сборку и разборку соединений, при этом опытные данные показывают, что давление при разборке может превышать давление при сборке и работе соединений в 1,6... 2 раза.

Приведенные конструктивные схемы соединений с натягом выполнены таким образом, что могут эксплуатироваться для передачи крутящего момента, при этом величину крутящего момента можно регулировать величиной затягивания соединения, например, при помощи деталей – гаек прижимных 7, стяжных 4, распорных болтов 8, подбором шайб упорных 5, промежуточных 6.

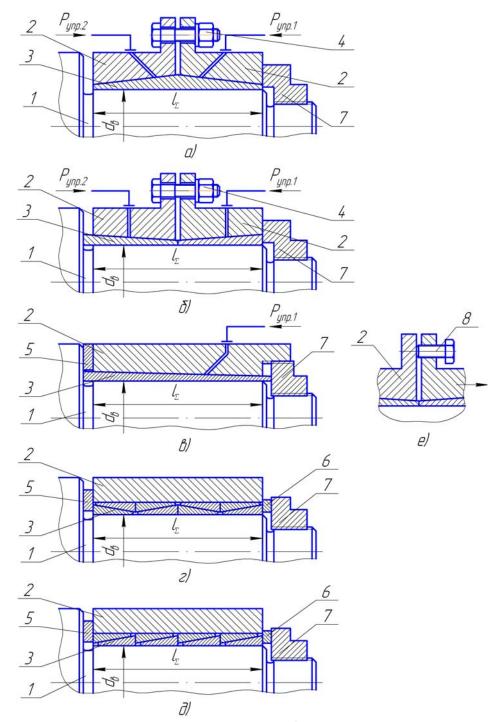


Рис. 1. Соединения с натягом разного типа (1 – вал; 2 – втулка основная; 3 – втулка промежуточная; 4 – болты с гайками стяжные; 5 – шайба упорная; 6 – шайба промежуточная; 7 – гайка прижимная; 8 – болт распорный; $d_{\it g}$ – диаметр вала; l_{Σ} – длина контакта вала с поверхностями втулок):

 $a, \, 6, \, b-c \,$ коническими удлиненными втулками; $r, \, d-c \,$ коническими укороченными втулками; $e-c \,$ распорным устройством

Представленные схемы соединений с натягом можно принимать и для передачи осевых сил вдоль оси вала 1. Детали соединения будут взаимно неподвижными, если средние контактные напряжения $q_{\scriptscriptstyle H}$ на поверхности контакта втулок с валом, умноженные на коэффициент трения — f_{mp} на контактной поверхности будут не менее сдвигающей силы умноженной на коэффициент запаса сцепления K_c , т. е. $K_c \cdot Q_{c\partial b} = f_{mp} \cdot \pi \cdot d_b \cdot \ell_{\Sigma}$.

При назначении величины K_c необходимо учитывать рассеивание значений коэффициентов трения, погрешностей возникающих при изготовлении контактирующих поверхностей, изгиб и нагружение деталей, склонность контактирующих соединений к фреттинг-коррозии. Обычно рекомендуют для соединений валов и зубчатых колес редукторов $K_c = 3,0...4,5$ в остальных случаях $K_c = 1,5...2$ [6].

Значения коэффициента трения находят в зависимости от материалов и способов сборки, а также экспериментальных данных. Обычно принимают $f_{mp} = 0,1...0,2$ [1].

Коэффициент трения можно повысить осаждением на поверхность вала тонкого слоя карбидов бора B_4C или кремния SiC (диаметр частиц 6-12 мкм). Такой слой повышает коэффициент трения в соединениях с натягом до 0,7, в несколько раз увеличивая нагрузочную способность соединения с натягом. Применяют также гальванические покрытия контактирующих поверхностей: оксидирование, азотирование, применяют абразивные порошки [1].

Среднее значения коэффициентов трения в соединениях, формируемых с охлаждением, как при кручении, так и при осевом сдвиге на 11 % выше, чем при тепловой сборке, а также выше на 21 % при круговом и на 27 % при осевом смещениях, чем при гидропрессовой сборке с применением авиамасла. Сравнение средних значений по одностороннему критерию Стьюдента показало, что с вероятностью 0,95 указанное различие в коэффициентах трения является значимым и обусловливается способом сборки.

При сборке соединений гидропрессовым способом, по сравнению с тепловым, прочность соединений при кручении и осевом сдвиге в среднем снижается на 9 %.

ВЫВОДЫ

Рассмотрены новые конструктивные схемы составных соединений с изменяющимся натягом, применение которых позволяет упростить конструкцию сборки и разборки соединений. В сочетании с известными методами приведены способы повышения нагрузочной способности соединений с натягом для передачи осевых сил и крутящих моментов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Гречищев Е. С. Соединения с натягом. Расчеты, проектирование, изготовление / Е. С. Гречищев, А. А. Ильяшенко. М.: Машиностроение, 1981. 247 с.
- 2. Берникер Е. И. Посадки с натягом в машиностроении / Е. И. Берникер. М. Л. : Машиностроение, $1966-166\,c$
 - 3. Балацкий Л. Т. Усталость валов в соединениях / Л. Т. Балацкий. Киев : Техника, 1972. 179 с.
- 4. Решетов Д. Н. Касательная контактная податливость деталей / Д. Н. Решетов, В. Н. Кирсанова // Машиноведение. 1970. № 2. С. 19—23.
- 5. Феодосьев В. И. Избранные задачи и вопросы по сопротивлению материалов / В. И. Феодосьев. М. : Наука, 1973. 400 c.
- 6. Иосилевич Γ . Б. Детали машин : учебник для студентов машиностроительных специальностей вузов / Γ . Б. Иосилевич. M. : Машиностроение, 1988. 388 с.

Роганов Л. Л. – д-р техн. наук, проф. кафедры МТО ДГМА;

Абрамова Л. Н. – канд. техн. наук, доц. кафедры ОПМ ДГМА;

Роганов М. Л. - канд. техн. наук, доц., директор ИПКПК.

ДГМА – Донбасская государственная машиностроительная академия, г. Краматорск.

ИПКПК – Институт повышения квалификации и переподготовки кадров, г. Краматорск.

E-mail: mto@dgma.donetsk.ua